Features predicting weight loss in overweight or obese participants in a web-based intervention: randomized trial.
Dec 2012
**Editor's note: Obesity is now rising to be the number one cause of what is referred to as secondary lymphedema. It is absolutely essential that those of us with lymphedema maintain a healthy weight. If we have lymphedema, being obese is like putting a gun to our head.Pat O'Connor **
Source
CSIRO, Food & Nutritional Sciences, Adelaide, Australia. emily.brindal@csiro.au.
Abstract
BACKGROUND:
Obesity remains a serious issue in many countries. Web-based programs offer good potential for delivery of weight loss programs. Yet, many Internet-delivered weight loss studies include support from medical or nutritional experts, and relatively little is known about purely web-based weight loss programs.
OBJECTIVE:
To determine whether supportive features and personalization in a 12-week web-based lifestyle intervention with no in-person professional contact affect retention and weight loss.
METHODS:
We assessed the effect of different features of a web-based weight loss intervention using a 12-week repeated-measures randomized parallel design. We developed 7 sites representing 3 functional groups. A national mass media promotion was used to attract overweight/obese Australian adults (based on body mass index [BMI] calculated from self-reported heights and weights). Eligible respondents (n = 8112) were randomly allocated to one of 3 functional groups: information-based (n = 183), supportive (n = 3994), or personalized-supportive (n = 3935). Both supportive sites included tools, such as a weight tracker, meal planner, and social networking platform. The personalized-supportive site included a meal planner that offered recommendations that were personalized using an algorithm based on a user's preferences for certain foods. Dietary and activity information were constant across sites, based on an existing and tested 12-week weight loss program (the Total Wellbeing Diet). Before and/or after the intervention, participants completed demographic (including self-reported weight), behavioral, and evaluation questionnaires online. Usage of the website and features was objectively recorded. All screening and data collection procedures were performed online with no face-to-face contact.
RESULTS:
Across all 3 groups, attrition was high at around 40% in the first week and 20% of the remaining participants each week. Retention was higher for the supportive sites compared to the information-based site only at week 12 (P = .01). The average number of days that each site was used varied significantly (P = .02) and was higher for the supportive site at 5.96 (SD 11.36) and personalized-supportive site at 5.50 (SD 10.35), relative to the information-based site at 3.43 (SD 4.28). In total, 435 participants provided a valid final weight at the 12-week follow-up. Intention-to-treat analyses (using multiple imputations) revealed that there were no statistically significant differences in weight loss between sites (P = .42). On average, participants lost 2.76% (SE 0.32%) of their initial body weight, with 23.7% (SE 3.7%) losing 5% or more of their initial weight. Within supportive conditions, the level of use of the online weight tracker was predictive of weight loss (model estimate = 0.34, P les then .001). Age (model estimate = 0.04, P lews then .001) and initial BMI (model estimate = -0.03, P less then .002) were associated with frequency of use of the weight tracker.
CONCLUSIONS:
Relative to a static control, inclusion of social networking features and personalized meal planning recommendations in a web-based weight loss program did not demonstrate additive effects for user weight loss or retention. These features did, however, increase the average number of days that a user engaged with the system. For users of the supportive websites, greater use of the weight tracker tool was associated with greater weight loss.
No comments:
Post a Comment